Une approche non paramétrique Bayesienne pour l'estimation de densité conditionnelle sur les rangs

نویسندگان

  • Carine Hue
  • Marc Boullé
چکیده

Résumé. Nous nous intéressons à l’estimation de la distribution des rangs d’une variable cible numérique conditionnellement à un ensemble de prédicteurs numériques. Pour cela, nous proposons une nouvelle approche non paramétrique Bayesienne pour effectuer une partition rectangulaire optimale de chaque couple (cible,prédicteur) uniquement à partir des rangs des individus. Nous montrons ensuite comment les effectifs de ces grilles nous permettent de construire un estimateur univarié de la densité conditionnelle sur les rangs et un estimateur multivarié utilisant l’hypothèse Bayesienne naïve. Ces estimateurs sont comparés aux meilleures méthodes évaluées lors d’un récent Challenge sur l’estimation d’une densité prédictive. Si l’estimateur Bayésien naïf utilisant l’ensemble des prédicteurs se révèle peu performant, l’estimateur univarié et l’estimateur combinant deux prédicteurs donne de très bons résultats malgré leur simplicité.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extraction d'objets vidéo : une approche combinant les contours actifs et le flot optique

Résumé. Dans cet article, nous présentons une méthode mixte de segmentation d'objets visuels dans une séquence d'images d'une vidéo combinant à la fois une segmentation basée régions et l'estimation de mouvement par flot optique. L'approche développée est basé sur une minimisation d'une fonctionnelle d'énergie (E) qui fait intervenir les probabilités d'appartenance (densité) avec une gaussienne...

متن کامل

Sélection des variables informatives pour l'apprentissage supervisé multi-tables

Résumé. Dans la fouille de données multi-tables, les données sont représentées sous un format relationnel dans lequel les individus de la table cible sont potentiellement associés à plusieurs enregistrements dans des tables secondaires en relation un-à-plusieurs. La plupart des approches existantes opèrent en transformant la représentation multi-tables, notamment par mise à plat. Par conséquent...

متن کامل

Nonparametric hierarchical Bayes analysis of binomial data via Bernstein polynomial priors

For binomial data analysis, many methods based on empirical Bayes interpretations have been developed, in which a variance-stabilizing transformation and a normality assumption are usually required. To achieve the greatest model flexibility, we conduct nonparametric Bayesian inference for binomial data and employ a special nonparametric Bayesian prior—the Bernstein–Dirichlet process (BDP)—in th...

متن کامل

Approches géométriques pour l'estimation des fractions d'abondance en traitement de données hyperspectrales. Extensions aux modèles de mélange non linéaires

RÉSUMÉ. De récentes études ont montré l’avantage de l’approche géométrique en démélange de données hyperspectrales. Elle permet d’identifier les signatures spectrales des composants purs. Jusqu’ici, l’estimation des fractions d’abondance a toujours été réalisée dans un second temps, par résolution d’un problème inverse généralement. Dans cet article, nous montrons que les techniques géométrique...

متن کامل

Clustering de séquences d'évènements temporels

Résumé. Nous proposons une nouvelle méthode de clustering et d’analyse de séquences temporelles basée sur les modèles en grille à trois dimensions. Les séquences sont partitionnées en clusters, la dimension temporelle est discrétisée en intervalles et la dimension évènement est partitionnée en groupes. La grille de cellules 3D forme ainsi un estimateur non-paramétrique constant par morceaux de ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007